RS-422 |
RS422 BALANCED DIFFERENTIAL DRIVERS
Line drivers and receivers are commonly used to exchange data between two or more
points (nodes) on a network. Reliable data communications can be difficult in the presence
of induced noise, ground level differences, impedance mismatches, failure to effectively
bias for idle line conditions, and other hazards associated with installation of a
network.
Standards have been developed to insure compatibility between units provided by different
manufacturers, and to allow for reasonable success in transferring data over specified
distances and/or data rates. The Electronics Industry Association (EIA) has produced
standards for RS485, RS422, RS232, and RS423 that deal with data communications.
Suggestions are often made to deal with practical problems that might be encountered in a
typical network. EIA standards where previously marked with the prefix "RS" to
indicate recommended standard; however, the standards are now generally indicated as
"EIA" standards to identify the standards organization. While the standards
bring uniformity to data communications, many areas are not specifically covered and
remain as "gray areas" for the used to discover (usually during installation) on
his own
The balanced voltage digital interface circuit will normally be utilized on data, timing, or control circuits where the data signaling rate is up to 10 Mbit/s. Balanced voltage digital interface devices meeting the electrical characteristics of need not operate over the entire data signaling rate range specified. They may be designed to operate over narrower ranges to satisfy more economically specific applications, particularly at the lower modulation rates.
When communicating at high data rates, or over long distances in real world
environments, single-ended methods are often inadequate. Differential data transmission
(balanced differential signal) offers superior performance in most applications.
Differential signals can help nullify the effects of ground shifts and induced noise
signals that can appear as common mode voltages on a network.
RS422 (differential) was designed for greater distances and higher Baud rates than RS232.
In its simplest form, a pair of converters from RS232 to RS422 (and back again) can be
used to form an "RS232 extension cord." Data rates of up to 100K bits / second
and distances up to 4000 Ft. can be accommodated with RS422. RS422 is also specified for
multi-drop (party-line) applications where only one driver is connected to, and transmits
on, a "bus" of up to 10 receivers.
While a multi-drop "type" application has many desirable advantages, RS422
devices cannot be used to construct a truly multi-point network. A true multi-point
network consists of multiple drivers and receivers connected on a single bus, where any
node can transmit or receive data.
"Quasi" multi-drop networks (4-wire) are often constructed using RS422 devices.
These networks are often used in a half-duplex mode, where a single master in a system
sends a command to one of several "slave" devices on a network. Typically one
device (node) is addressed by the host computer and a response is received from that
device. Systems of this type (4-wire, half-duplex) are often constructed to avoid
"data collision" (bus contention) problems on a multi-drop network (more about
solving this problem on a two-wire network in a moment).
Compatibility With Other Interfaces
Both RS-422 and RS-485 use a twisted-pair wire (i.e. 2 wires) for each signal. They
both use the same differential drive with identical voltage swings: 0 to +5V. The main
difference between RS-422 and RS-485 is that while RS-422 is strictly for point-to-point
communications (and the driver is always enabled), RS-485 can be used for multidrop
systems (and the driver has a tri-state capability).
As stated in the scope of this Standard, generators and receivers meeting the
requirements of RS-422-A are compatible with those meeting CCITT Recommendations V. 11 and
X.27. The electrical characteristics of the balanced voltage digital interface are
designed to allow use of both balanced and unbalanced (see EIA Standard RS-423-A) circuits
within the same interconnection cable sheath. For example, the balanced circuits may be
used for data and timing while the unbalanced circuits may be used for low speed control
functions.
Since the basic differential receivers of RS-423-A and RS422-A are electrically identical, it is possible to interconnect an equipment using RS423-A receivers and generators on one side of the interface with an equipment using RS422-A generators and receivers on the other side of the interface, if the leads of the receivers and generators are properly configured to accommodate such an arrangement and the cable is not terminated.
The balanced interface circuit is not intended for interoperation with other interface electrical characteristics such as RS-232-C. MIL-STD-188C and MIL-STD-188-100, and CCITT Recommendations V.28 and V.35. Under certain conditions. interoperation with circuits of some of the above interfaces may be possible but may require modification in the interface or within the equipment; therefore, satisfactory operation is not assured. and additional provisions not specified herein may be required.
SPECIFICATIONS | RS423 | RS422 | |
---|---|---|---|
Mode of Operation | SINGLE - ENDED | DIFFERENTIAL | |
Total Number of Drivers and Receivers on One Line | 1 DRIVER 10 RECVR |
1 DRIVER 10 RECVR |
|
Maximum Cable Length | 4000 FT. | 4000 FT. | |
Maximum Data Rate | 100kb/s | 10Mb/s | |
Maximum Driver Output Voltage | +/-6V | -0.25V to +6V | |
Driver Output Signal Level (Loaded Min.) | Loaded | +/-3.6V | +/-2.0V |
Driver Output Signal Level (Unloaded Max) | Unloaded | +/-6V | +/-6V |
Driver Load Impedance (Ohms) | >450 | 100 | |
Max. Driver Current in High Z State | Power On | N/A | N/A |
Max. Driver Current in High Z State | Power Off | +/-100uA | +/-100uA |
Slew Rate (Max.) | Adjustable | N/A | |
Receiver Input Voltage Range | +/-12V | -10V to +10V | |
Receiver Input Sensitivity | +/-200mV | +/-200mV | |
Receiver Input Resistance (Ohms) | 4k min. | 4k min. |
Making sense of cable specifications
Selecting data cable for an RS-422 or RS-485 system isn't difficult, but often
gets lost in the shuffle of larger system issues. Care should be taken. however,
because intermittent problems caused by marginal cable can be very difficult to
troubleshoot.
Beyond the obvious traits such as number of conductors and wire gauge, cable
specifications include a handful of less intuitive terms.
Characteristic Impedance (Ohms): A value based on the inherent conductance,
resistance, capacitance and inductance of a cable that represents the impedance
of an infinitely long cable. When the cable is out to any length and terminated
with this Characteristic Impedance, measurements of the cable will be identical
to values obtained from the infinite length cable. That is to say that the
termination of the cable with this impedance gives the cable the appearance of
being infinite length, allowing no reflections of the transmitted signal. If
termination is required in a system, the termination impedance value should
match the Characteristic Impedance of the cable.
Shunt Capacitance (pF/ft): The amount of equivalent capacitive load of the
cable, typically listed in a per foot basis One of the factors limiting total
cable length is the capacitive load. Systems with long lengths benefits from
using low capacitance cable.
Propagation velocity (% of c): The speed at which an electrical signal travels
in the cable. The value given typically must be multiplied by the speed of light
(c) to obtain units of meters per second. For example, a cable that lists a
propagation velocity of 78% gives a velocity of 0.78 X 300 X 106 - 234 X 106
meters per second.
Plenum cable
Plenum rated cable is fire resistant and less toxic when burning than non-plenum
rated cable. Check building and fire codes for requirements. Plenum cable is
generally more expensive due to the sheathing material used.
The RS-422 specification recommends 24AWG twisted pair cable with a shunt
capacitance of 16 pF per foot and 100 ohm characteristic impedance. While the
RS-485 specification does not specify cabling, these recommendations should be
used for RS485 systems as well.
It can be difficult to quantity whether shielding is required in a particular
system or not, until problems arise. We recommend erring on the safe side and
using shielded cable. Shielded cable is only slightly more expensive than
unshielded.
There are many cables available meeting the recommendations of RS-422 and
RS-485, made specifically for that application. Another choice is the same cable
commonly used in the misted pair Ethernet cabling. This cable, commonly referred
to as Category 5 cable, is defined by the ElA/TIA/ANSI 568 specification The
extremely high volume of Category 5 cable used makes it widely available and
very inexpensive, often less than half the price of specialty RS422/485 cabling.
The cable has a maximum capacitance of 17 pF/ft (14.5 pF typical) and
characteristic impedance of 100 ohms.
Category 5 cable is available as shielded twisted pair (STP) as well as
unshielded twisted pair (UTP) and generally exceeds the recommendations for
RS-422 making it an excellent choice for RS-422 and RS-485 systems.
RS232 & Cable Diagrams
info (how it
works and spec. & pin outs)
X.21
info (how it
works and spec. & pin outs)
RS423 info
(spec. & pin outs)
RS485
info (how it works and spec. &
pin outs)
RS449
info (how it works and spec. &
pin outs)
RS530 info
spec.
V.35 info (how
it works and spec.& pin outs)
IEEE-488 info
(pin layout)
USCO
Codes
RJ-48C and RJ48S
jack pin out
RJ 11C thru RJ48 Jacks -
a Glossary
jump to Interface Converters pages jump to more technical information pages
ARC ELECTRONICS
301-924-7400 EXT 25
jump to ... Home Page
arc@arcelect.com